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Abstract
Dementia is a type of brain disease that affects the mental abilities. Various studies utilize PET features or some two-
dimensional brain perspectives to diagnose dementia. In this study, we have proposed an ensemble approach, which employs
volumetric and axial perspective features for the diagnosis of Alzheimer’s disease and the patients with mild cognitive
impairment. We have employed deep learning models and constructed two disparate networks. The first network evaluates
volumetric features, and the second network assesses grid-based brain scan features. Decisions of these networks were
combined by an adaptive majority voting algorithm to create an ensemble learner. In the evaluations, we compared ensemble
networkswith single ones aswell as feature fusion networks to identify possible improvement; as a result, the ensemblemethod
turned out to be promising for making a diagnostic decision. The proposed ensemble network achieved an average accuracy
of 91.83% for the diagnosis of Alzheimer’s disease; to the best of our knowledge, it is the highest diagnosis performance in
the literature.

Keywords Alzheimer’s diagnosis ·MCI diagnosis · Convolutional neural network · Ensemble learning ·
Fluorodeoxyglucose PET

1 Introduction

Dementia is a neurological disorder that causes structural
and functional changes in the brain. The most common form
of dementia is Alzheimer’s disease. It is a neurodegener-
ative disease that affects cognitive functions by disrupting
the functioning of neurons [1]. [18F]-fluorodeoxyglucose
Positron Emission Tomography (FDG-PET), amyloid, tau,
MagneticResonance Imaging (MRI), CT scans are employed
in the diagnosis of Alzheimer’s and other dementia diseases.
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yalinbastanlar@iyte.edu.tr

Zerrin Işık
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The examination of such medical scans allows us to obtain
many structural, molecular or functional information about
the brain with a non-invasive technique. PET scanning is an
imaging technique that provides information about diseases
by imaging tissues in vivo. In order to obtain this image,
a radioactive tracer is injected into the patient. Cell and
molecular information about organs and tissues is obtained
by examining the image. Different PET images can be
obtainedwith different radioactive tracers administered to the
patient [2]. FDG-PET scans provide information about glu-
cose metabolism disorders. Glucose is an important energy
source of the brain, and it is provided to understand the func-
tional disorders caused by neurological diseases by detecting
disorders in glucose consumption. Since functional disor-
ders can be detected with PET images, it is important to
detect brain-related disorders before the anatomical changes
occur.

In the PET scans, a decrease in blood flow and glucose
metabolism in the temporal and parietal cortex indicates
Alzheimer’s disease [3]. It is estimated that neurons begin
to degenerate 20 to 30 years before the clinical course of
Alzheimer’s disease. In this process, the amount of plaque
and tangles accumulated in the patient’s brain increases, and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-022-02185-4&domain=pdf
http://orcid.org/0000-0003-1834-6184


Signal, Image and Video Processing

the first symptoms begin to appear, some cognitive disor-
ders may be detected, but this patient is not in a condition to
be considered as an Alzheimer’s patient. This stage is often
referred to as mild cognitive impairment (MCI) [4]. In a
study, MCI patients exhibited the same behaviors as healthy
individuals rather than Alzheimer’s patients, although they
achieved lower values in some tests such as full-scale IQ and
Controlled Verbal Word Combination Test in general cog-
nitive measures [5]. For these reasons, it is more difficult
to diagnose MCI patients than Alzheimer’s patients, but the
diagnosis of a patient at this stage is very important for the
treatment of early symptoms.

In this study, deep neural networks were combined to
create an ensemble model for computerized diagnosis of
dementia diseases. Volumetric or two-dimensional perspec-
tive features obtained from PET scans have been used in
the literature. However, there is a lack of information on
which type of features is appropriate to develop amore effec-
tive diagnostic system. Disparate deep neural networks have
been constructed and utilized to make ensemble decisions
for obtaining more robust predictions. The first network is
a type of 3D convolutional neural network (CNN) which
focuses on volumetric features, while the other is a type of 2D
CNN which assesses grid-based two-dimensional features.
The proposed ensemble network outperformed studies in the
literature on diagnosis of Alzheimer’s disease with cross-
validation. It achieved an accuracy of 91.83 that is slightly
better than the single models. The main contribution of this
study is designing and experimenting an efficient ensemble
method that takes advantage of different features to improve
diagnostic accuracy of Alzheimer’s disease.

The sections of paper are organized as follows. In Sect. 2,
previous work on computerized diagnosis using PET and
ensemble models are presented. In Sect. 3, data preparation
steps and proposed method are explained in detail. Experi-
mental results are shown and compared with other relevant
studies in the literature in Sect. 4. Finally, our conclusion and
future work are presented in Sect. 5.

2 Related work

Nowadays, computer-aideddiagnosis algorithmshave started
to be used instead of performing the manual evaluation
with an observer thanks to the improvement in the process-
ing power of machines. In the literature, machine learning
models that take PET scans as input and perform diagno-
sis were reported. Cabral et al. [6] used voxel densities of
FDG-PET images obtained from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) dataset to detect conversion of
MCI to Alzheimer’s disease. PET images were used in the
computerized diagnosis of many neurological diseases.

Mudali et al. [7] proposed a model to detect Parkinson’s
syndrome with FDG-PET. Kerr et al. [8] obtained FDG-PET
features by extracting 47 regions for the detection of epilepsy
patients.

Deep learning algorithms, as opposed to classicalmachine
learning methods, are very successful in detecting many
diseases. CNN models that take the images as input pro-
duce the results by performing the classification process. In
computerized support systems developed with CNN mod-
els, medical image processing is performed directly on the
data without any feature engineering work. In order to detect
Alzheimer’s and other dementia diseases, deep learningmod-
els are divided into two-dimensional and three-dimensional
approaches for processing images. The developed models
commonly use MRI and PET images. Two-dimensional
approaches are based on the processing of sections obtained
from volumetric brain images. Kang et al. [9] proposed a
CNN model to predict positive and negative β-Amyloid
states in patients with Alzheimer’s and MCI. Some stud-
ies [10] reported that the two-dimensional CNN model that
receives brain surface perfusion images performs a more
efficient classification than the three-dimensional CNN that
receives brain images containing thewhole brain.On the con-
trary, three-dimensional approaches have been widely used
as well [16–18]. In these studies, volumetric brain images
are input, and processing is performed on voxels. It also
reported that usingmultiple imagingmodalities improved the
performance [18]. Vu et al. [11] have developed the Sparse
Automatic Encoder (SAE) and CNN models that input MRI
and PET images for the diagnosis of dementia.

Instead of just following the decision obtained from a sin-
gle supervisedmachine learningmodel, employing ensemble
models that evaluate more than one decision might be more
successful. In various studies [12–15], the performances of
the composed ensemble models were compared with the sin-
gle models, and better classification performances have been
reported. In our study, an ensemble method that combines
CNN models is proposed for the detection of dementia dis-
eases. Voxel intensities and grid-based pixel intensities were
given into three-dimensional and two-dimensional CNN
models, separately. An ensemble method has been proposed
to create robust decision models. We performed classifica-
tion on these models to identify Alzheimer’s patients and
individuals with MCI.

3 Materials andmethods

In this section,wepresent the data preparation steps, followed
by the explanation of the proposed method. Overview of the
method is shown in Fig. 1.
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Fig. 1 Overview of the proposed ensemble method

3.1 Obtaining data

The data required to train and test the proposed deep learning
model were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) project 1. ADNI-3 is the latest
version of the ADNI project and is currently being updated
[19]. Clinical data such as age, gender, cognitive test values
of each participant, and differentmedical imaging techniques
such as MRI, FDG-PET are available in ADNI. In this study,
FDG-PET scans were preferred for the diagnosis of demen-
tia disease; for this reason, FDG-PET scans from all versions
were obtained from the dataset. 985 FDG-PET scans (296
Alzheimer’s, 373MCI, 316 healthy controls) were employed
to perform diagnosis.

3.2 Preprocessing of data

Volumetric images in the dataset were obtained and pro-
cessed in Neuroimaging Information Technology Initiative
(NIfTI) format. PET scans were co-registered and averaged
from their baseline PET scan and generated images with 1.5
mm cubic voxels. Spatial orientation and intensity normal-
ization were applied to the scans. Scanner-specific isotropic
Gaussian smoothing was applied to create scans with uni-
form isotropic resolution. These stages were implemented
by ADNI; we acquired these scans to evaluate all patients
under the same conditions. We have composed two types
of input images from the PET scans. The first one contains

1 http://adni.loni.usc.edu

Fig. 2 FDG-PET scans of an Alzheimer’s patient. This is the 16-image
grid input for the 2D CNN

voxel intensities; these values have been normalized into 0-
1 range. Normalization was performed on each perspectives
of the volumetric brain scans. The PET scan has been visu-
alized with the brain viewer application from the Statistics
OnlineComputational Resource (SOCR) community2. Since
the input of 3D network is volumetric data, it contains all
directions of the brain.

In order to create 2D network input, some axial plane
slices have been selected from volumetric scans. Sixteen
slices were composed by shifting the index value by three
to the right and left, starting from the middle of the data.
All images have been composed into a 4x4 matrix grid form.
Matrix is in grayscale color space and normalized into 0-1
scale similar to the first input. The creation of the 2D input
was inspired by the study performed at the University of
California [20]. They did not apply any method to select
brain voxels. Grid matrices were composed of axial slices
that have been chosen according to interval value; therefore,
many brain regions have been included in the form of a grid.
Matrices were created for each patient or healthy individ-
ual. Generated grid-based input of an Alzheimer’s patient is
shown in Fig. 2, which is resized to 320x320 pixels prior to
feeding the network.

On the other hand, volumetric inputs were prepared for
feeding 3D network. On that account, volumetric convolu-
tion operation was performed on the input. This operation
was applied to all feature volumes that obtained from pre-
vious layer. Subsequently, the new feature volumes have

2 http://www.SOCR.umich.edu
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Fig. 3 Structure of the proposed 3D network

been generated by adding convolution values with bias. Net-
work structure is shown in Fig. 3. The size of this input is
160x160x96; it comprises of all perspectives of brain, i.e.,
axial, coronal, sagittal. After obtaining volumetric and grid
scans, we split data into six-fold; each fold comprises two
sets as roughly 20% test and 80% train. Python program-
ming language was preferred to develop and implement all
pre-processing methods.

3.3 Ensemble of deep neural networks

In this study, two deep classification networks that take dis-
parate type of data input have been constructed. The structure
of the first network, which takes voxel intensities as input, is
shown in Fig. 3. After 5 sets of 3D-convolution and pooling
layers, data are flattened and followed by two fully connected
layers and a softmax classification layer. We have preferred
3x3x3 convolution filters which do not change the size (with
padding) and 2x2x2 max-pooling to decrease the volume of
each unit. L2 regularization and batch normalization were
employed after three-dimensional max pooling operations
to avoid overfitting and reduce the number of epochs. The
second classifier network is shown in Fig. 4. It takes the
grid-based axial brain slices obtained from FDG-PET scans.
This network has been created by inspiration of the VGG-16
model [21]. In this model, multiple convolution operations
were carried out one after the other and transferred to the
pooling layers. Two fully connected layers have 4096 neu-
rons each followed by a 2-class softmax layer.

Ensemble learning is a powerful method suggesting that
combined multiple base learners are better than the single
weak learner. After creating the two basic learners (2D and
3D networks), these were combined in parallel to create meta
learners. In this way, instead of evaluating only voxel intensi-
ties of FDG-PET scans, meta learners also take into account
grid-based axial brain slices. A combination was performed
withmajority voting; all the more, a customized dynamically
weighted majority voting algorithm was applied to classify
Alzheimer’s and MCI patients.

Since we have a limited number of samples in the dataset,
we preferred to apply transfer learning. Namely, ImageNet
weights were used to initialize our Alzheimer’s disease clas-
sification network. On the other hand, obtained weights after
fine-tuning of Alzheimer’s disease network were applied to
train theMCI network in a similarmanner with [29]. The rea-
son is that some patients with MCI may have similar glucose
metabolism with Alzheimer’s patients.

For all networks, Rectified Linear Unit (ReLU) activation
function has been employed in the output of layers except the
last layer. In the last layer, softmax activation function has
been applied for two neurons to perform final classification.

Fig. 4 Structure of the 2D network
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We preferred to utilize categorical cross-entropy loss as the
cost function:

L(yi , ŷi ) = −(yi · log(ŷi ) + (1− yi ) · log(1− ŷi )) (1)

where yi is ground truth label value of i th sample and ŷi is
predicted value of i th sample. Besides, L2 regularization loss
is added to the cost function for all networks in order to avoid
overfitting:

Lr = 1

K

K∑

i=1

L(yi , ŷi ) + λ

2 · K
M∑

j=1

W 2
j (2)

where L is the loss function given in Eq. 1, K is the size of
data, λ is the regularization parameter, M is the number of
features, and Wj is the sum of j th weight vector. The Adam
optimization approach has been applied to optimize the cost
function, and the initial learning rate values were 1e-5 and
1e-4 for the 2D and 3D networks, respectively.

2D and 3D models were combined with a custom dynam-
ically weighted majority voting algorithm to create meta
learners for the classification of patients with Alzheimer’s
and MCI as shown in Fig. 1. In essence, the contributions of
2D and 3D networks may not be equal to each other. When
necessary, we apply weights for increasing or decreasing the
impact of the networks and building robust meta learners. Let
K be the number of classes, and Wβ be the weight of a base
learner which changes dynamically. Softmax function and
ensemble equation are presented in Eq. 3 and Eq. 4. There
are two base learners in our study, one weight parameter is
enough. WhenWβ is the weight of the first base learner (s1),
1−Wβ becomes the weight of the second one (s2).

s(z j ) = ez j
∑K

k=1 e
zk

f or j = 1, ..., K (3)

Eout =
[
Wβ · s1(z1) + (1−Wβ) · s2(z1)
Wβ · s1(z2) + (1−Wβ) · s2(z2)

]
(4)

The dynamic change ofweights is based on the confidence
scores. The idea is that if the decisions of the two base learn-
ers are different and one of them is overconfident, then the
weight of the overconfident learner is decreased. Otherwise,
a majority voting with equal weights is applied.

The overconfidence problemhas been associatedwith net-
works using ReLU activation functions and softmax output
layers [22–25]. In brief, it is known that neural networks are
good atmaking predictions but not good at tellingwhen these
predictions are reliable. For instance, an out-of-distribution
sample can have a very high confidence just because scores
of other classes are low. Researchers have proposed solutions
that are based on Bayesian approximations [24], calibration
with temperature scaling [22], and a similar technique called

Table 1 Structures of feature fusion models

Number of neurons
Feature/task Input 1st 2rd 3rd 4rd Output

2D/AD 4096 256 256 256 256 2

3D/AD 2400 256 256 256 256 2

2D/MCI 4096 256 256 – – 2

3D/MCI 2400 256 256 – – 2

relaxed softmax [23]. We attacked the overconfidence prob-
lemnotwithin the samenetwork butwhilemerging the scores
of base learners. In other words, we penalized the overconfi-
dent decisions by decreasing their weights (Wβ ) with respect
to the other base learner. In softmax layer, values that are
greater than 0.9 were accepted as overconfident decisions. In
the diagnosis of Alzheimer’s and MCI, Wβ values are set to
0.3 and 0.1 for penalizing current overconfident decisions as
shown in Eq. 4.

3.4 Feature fusion

In order to emphasize the achievement of ensemble methods,
several feature-level fusion models have been constructed.
A serial fusion was applied on the features that extracted
from 2D and 3D networks (Fig. 3 and 4). 2400 features from
3D network were extracted by flattening the output of last
convolution and pooling operations, whereas 4096 features
from 2D network were acquired from the first fully con-
nected layer. All features were extracted automatically after
the networks are trained without any prior feature engineer-
ing. Features were normalized prior feeding to a multilayer
perceptron (MLP) model. The experimental results obtained
from the fusion methods have been compared with ensem-
ble methods. Initially, diverse machine learning methods on
fused features such that SVM with linear and radial basis
kernels, decision tree, random forest, andMLPwere applied.
The best performing models were the MLPs with four and
two layers for AD and MCI, respectively (Table 1). A large
number of deep and shallow MLP models were designed to
compare performances with each other.

4 Experimental results

In this part, we present our results and compare themwith the
studies in the literature. After obtaining pre-processed brain
scans, 2Dand3Dsingle networks, feature fusionnetworks, as
well as ensemblemodels have been employed to perform two
main binary classifications. These are Alzheimer’s disease
(AD) versus healthy controls (HC) and MCI versus healthy
controls (HC). We applied six-fold cross-validation. In each
fold, dataset is split into six subsets which consist of 80%
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Table 2 Comparison of the performances of our models

Task Network Acc Max Acc

AD/HC 2D 90.03±2.9 94.12

AD/HC 3D 91.66±3.7 97.06

AD/HC Fusion 89.05±4.1 94.12

AD/HC Ensemble 91.83±3.0 96.08

MCI/HC 2D 70.39±2.3 73.91

MCI/HC 3D 69.37±3.5 73.91

MCI/HC Fusion 68.93±2.8 72.17

MCI/HC Ensemble 71.26±3.3 74.78

* Acc: Average accuracy, Max Acc: Best fold accuracy

train and 20% test samples. 2D and 3Dnetworkswere trained
up to 150 and 100 epochs, respectively. Since 3D networks
require more computation power and approximately twice
as much training time than 2D networks, it has been trained
with fewer epochs. Table 2 summarizes average classifica-
tion performances as well as the maximum accuracy which
indicates the best fold accuracy for classification AD versus
HC and MCI versus HC. Detailed performance of each fold
is provided in supplementary material for both AD andMCI.
All experiments were performed on a GPU (Nvidia Tesla
V100) accelerated Dell Server.

Our experiments show that the performance of AD diag-
nosis is better than the MCI diagnosis. Since MCI is an early
stage of dementia, it is hard to differentiate from normal cog-
nitive, this situation is also discussed in the literature [26].
Although there is not a huge difference, the 3D network
showed slightly better performance than the 2D network
in the classification of AD. Nevertheless, it requires more
computation power and more training time. It seems that the
proposed grid-based image processing method is pretty use-
ful for representing volumetric datawith a lower cost. Thanks
to this advantage, it can be preferred as an alternative to vol-
umetric inputs for deep neural networks.

Our adaptive majority voting ensemble algorithm, which
is utilized in the ensemblemethod forADclassification, regu-
lated decisions of base learners, and decisionswere improved
for avoiding over-confident estimations. As a result, the
ensemble method achieved higher performance than the
single and feature fusion networks according to average accu-
racy values. In MCI detection, the grid-based 2D network
is performed better than the 3D network. It is not only a
cost-effective method but also achieves better accuracy value
than its 3D network. Although the performance is not signif-
icantly different, the ensemble method in identification of
MCI patients performed slightly better than the compared
base models. It is clearly seen that serial feature fusion is not
as effective as our proposed adaptive ensemble method.

There are diverse studies in the literature that proposed
various solutions to detect AD and MCI. Comparisons with

Table 3 Comparison of AD diagnosis with literature

Study Method Acc AD/HC

Hinrichs et al. [27] LPB 84.00 89/94

Gray et al. [28] SVM 88.00 50/55

Gray et al. [31] SVM 81.60 71/69

Cheng and Liu [16] CNN 87.13 93/100

Liu et al. [29] CNN 88.08 93/100

Kim et al. [30] GAP 91.02 141/348

Liu et al. [32] CNN+RNN 91.20 93/100

Proposed Ensemble 91.83 296/316

* Acc: Average accuracy

Table 4 Comparison of MCI diagnosis with literature

Study Method Acc MCI/HC

Gray et al. [31] SVM 70.02 147/69

Liu et al. [32] CNN 78.09 146/100

Proposed Ensemble 71.26 373/316

* Acc: Average accuracy

these studies are summarized in Tables 3 and 4. All these
studies have employed cross-validation in their experimental
setup. Although it takes a long time with deep networks, we
also carried out cross-validation instead of using one random
test set since it is the correct way to estimate generalization
performance. With the proposed ensemble method, 91.83%
accuracy has been achieved to detect AD. We also achieved
the best fold accuracy of 97.06% with a deep 3D network.
These values are superior to the studies available in the lit-
erature. Another advantage is that in our study FDG-PET
scans are given as input to the deep networks after some pre-
processing steps without a separate feature extraction step.
Feature extraction is carried out automatically with convolu-
tion and max pooling operations unlike [27,28,31].

We achieved 71.26% accuracy to detect MCI patients;
experiments were carried out without dividing MCI patients
into sub-categories such as stable or progressive. The number
of participants covered in our study is higher than the most of
studies available in the literature as shown in Tables 3 and 4.
In terms of patient sample sizes, our study reveals more real-
istic performances of deep neural models for diagnosis of
AD and MCI.

5 Conclusion and future work

In this study, we investigated whether the representation
of the volumetric data in a two-dimensional grid-based
approach is contributing to the final decision with ensem-
ble learning to improve the diagnostic accuracy and early
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diagnosis of AD. We proposed a method that exploits both
the volumetric data and its 2D version, which is obtained by
converting data into a grid image matrix; in addition, we
presented a serial fusion method to perform diagnostic tasks.
Subsequently, we introduced an ensemble learning algorithm
to avoid overconfidence and thereby improve classification
performance of neural networks. Our main contribution is
designing an efficient ensemble method that takes advan-
tages of diverse features.

Deep neural networks were employed to treat volumetric
data and grid matrices. A network with three-dimensional
convolutions was applied to volumetric data, whereas net-
works with two-dimensional convolutions were performed
on grid image matrices. The results show that the grid pro-
cessing approach can be preferred to evaluate medical image
data as an alternative of using whole volumetric data. In
this approach, axial images were combined to create whole
matrices; however, it can be improved by adding other brain
projections and creating a network that evaluates thesematri-
ces. We applied batch normalization and transfer learning
to avoid overfitting and reduce the training time of deep
networks. ImageNet parameters were put upon the two-
dimensional deep network for the classification of AD and
HC. Although content in the ImageNet data and our FDG-
PET data is not similar, pre-trained parameters made a
significant contribution to improve the network performance.
In addition, parameters learned after training of the AD net-
work have been employed to initialize parameters of theMCI
network, since it shows better performances than the random
initialization of parameters.

Our ensemble learning method which comprises 2D and
3D networks exhibited promising results for the classifica-
tion of AD with an accuracy of 91.83% and MCI with an
accuracy of 71.26%. Despite that grid processing approach
showed encouraging results with two-dimensional networks,
close results have been achievedwith whole volumetric brain
scans on three-dimensional networks. Further that, fewer
pre-processing steps were applied to obtain whole volumet-
ric scans. Dementia diseases are brain-related diseases that
cause volume loss or atrophy. In this context, it can be an
advantage to evaluate atrophy in the brain regions with a
three-dimensional approach. It may be considered to opti-
mize multidimensional deep networks to build up efficient
models. We reported the results with axial projections of
the brain and the whole volumetric PET scans. Therefore,
there was no segmentation operation to extract brain regions;
instead that allowed learning significant biomarkers from
the data. The disadvantage is that it is troublesome for the
visual explanation of the biomarkers by the human experts.
Nevertheless, deep neural networks can capture important
volumetric features as biomarkers of brain diseases espe-
cially when these are hard to catch by human eyes.

As future work, we intended to develop deep neural net-
works that are able to evaluate not only functional changes
in the brain metabolism but also structural properties related
to dementia diseases. Although it is important to detect func-
tional changes in the brain at the early stages of dementia,
after disease progresses, structural properties can show sig-
nificant signs about the health status and abilities of the
patient. In this sense, combining the advantages of functional
and structural properties of the brain can be beneficial to
evaluate the stage or progression of dementia diseases. For
this purpose, FDG-PET scans exhibit functional features; on
the other hand, MRI scans provide useful information about
structural changes in the brain. In this context, we planned
to construct multi-modal deep models that are able to eval-
uate FDG-PET and MRI scans as multiple features for the
diagnosis of dementia diseases.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11760-022-02185-
4.
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